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The way in which swirling flow in a pipe decays has been computed by solving an 
approximation to the Navier-Stokes equations. The approximation was performed using 
an order-of-magnitude analysis and a turbulent viscosity that is computed as part of the 
solution. At a sufficient distance downstream of a swirl-inducing fitting, the flow is 
predicted to rotate approximately as a solid body: experimental data confirm this 
prediction. Swirl decay rates have been computed and found to be very nearly proportional 
to pipe friction factor: this result is also in good agreement with experiment and implies 
that swirl is extremely persistent in smooth pipes at high Reynolds numbers. 
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I n t roduc t ion  

The decay of swirling flow in a pipe is of great importance. For 
example, since swirl can cause significant errors in flow 
measurement, it is important to know what length of straight 
pipe is required for a given upstream swirl to reduce to a 
specified acceptable level of swirl. The international standard 
ISO 5167-1 (1991) for flow measurement using orifice plates, 
nozzles, and Venturi tubes requires that, where specific 
installation conditions cannot be met, the swirl angle must be 
measured and must be less than 2 ° over the pipe. 

In a key paper, Kreith and Sonju (1965) computed the decay 
of swirl by solving an approximation to the Navier-Stokes 
equations. Their approximation was performed using an 
order-of-magnitude analysis and the assumption of a constant 
turbulent viscosity. In their comparison of the computed swirl 
velocity distribution with the experimental measurements of 
Musolf(1963), they found good agreement at distances less than 
20 diameters downstream of a twisted-tape swirl inducer, but 
deviations further downstream. Their computational work 
predicts that downstream of a substantial length of straight 
pipe, the maximum circumferential velocity should be roughly 
halfway between the center of the pipe and the wall. However, 
in the experimental measurements of Musolf (1993) down- 
stream of the inducer and of both Mattingly and Yeh (1990) 
and Mottram and Rawat (1986) downstream of two bends in 
perpendicular planes, the flow rotates approximately as a solid 
body even quite a short distance downstream of the 
disturbance, and the maximum circumferential velocity is 
obtained quite near the pipe wall. 

It is worth noting that in the case of a very strongly swirling 
flow (with a maximum swirl angle of about 60 °) produced by 
an axial flow type impeller by Murakami et al. (1976), the flow 
eventually rotates as a solid body. The location of the 
maximum circumferential velocity is initially at 65% of the 
distance from the axis to the pipe wall; as the flow moves 
downstream, a free-vortex-type flow is established, and the 
maximum moves towards the axis to about 35% of the distance 
from axis to wall at minimum, and then back towards the pipe 
wall. At a maximum swirl angle of about 14 °, the maximum 
circumferential velocity is located very close to the wall, and 
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at a maximum swirl angle of about 9 ° the flow rotates as a 
solid body. 

In order to resolve the discrepancy between computation and 
experiment, computational work has been undertaken at the 
National Engineering Laboratory (NEL) in Scotland. The 
simplified circumferential momentum equation derived by 
Kreith and Sonju (1965) is retained; however, the turbulent 
viscosity is no longer constant, but calculated from the axial 
momentum equation. In this case the computed flow does 
indeed rotate approximately as a solid body. Moreover, good 
agreement with experimentally measured swirl decay rates is 
obtained. 

The use of the turbulent viscosity derived from the axial 
momentum equation in the circumferential momentum 
equation is based on the assumption that, although in swirling 
flow in general the turbulent viscosity is anisotropic, in weak 
swirl (after a sufficient length of straight pipe) the turbulent 
viscosity may be considered isotropic because the circum- 
ferential velocity is small. Even in strong swirl in a straight pipe 
the anisotropy is weak close to the wall (Kitoh 1991). Whereas 
Kreith and Sonju did not need to assume that the turbulent 
viscosity is isotropic, their method involved introducing its 
value in the circumferential momentum equation from 
experimental measurements. However, if the swirl is weak and 
the turbulent viscosity is assumed anisotropic, it is very difficult 
to obtain a measured value for the circumferential turbulent 
viscosity. Moreover, the turbulent viscosity used here has more 
appropriate behavior near the pipe wall than the constant value 
used previously. 

Der iv ing  the  govern ing  equat ions  

For steady, incompressible, axisymmetric, turbulent flow, the 
time-averaged equations of conservation of mass and of 
momentum in cylindrical polar coordinates are as follows: 

~U 1 ~(rV) 
- - - t  0 (1) 
t~x r t~r 

t3U 8 U _  1 aP f~2U ~2U 1 ~U) 
v + v p + + a-- + ; 

/ 

tt u- ~ -I ru-~ (2) 
r t3r 

212 Int. J. Heat and Fluid Flow, Vol. 15, No. 3, June 1994 



OV OV W 2 1 OP fO2V 02V 1 OV V'~ 
U - - + V  

ox Or r Or ) 
- ~ u - 7 + -  r F - -  rL 

OW v O W  VW {02W 02W 1 OW W'~ 
U - - +  + - - =  v ~ - x 2  + - OX ~- r  r ~-r2 + r ~r ~- ) 

(3) 

0 0 v'w' 
- ~x u-7"~ + ~r + 2  (4) 

where U, V, and W are the mean and u', v', and w' the fluctuating 
velocity components in the axial, radial, and circumferential 
directions, respectively, and x and r are the axial and radial 
coordinates. P is the mean pressure at a point, p is the density, 
and v is the kinematic viscosity. The bar over a function of 
fluctuating quantities denotes its time-averaged value. 

In order to solve these equations, it is necessary first to use 
order-of-magnitude analysis. The essential assumption made is 
that the circumferential velocity is small compared with the 
mean axial velocity. Then 

r = R s  } 
x = 2Dz/2 
u = O{u(s) + 6uds, z)} (5) 
W = ~Ow 
P = pO2p 

where R is the pipe radius, D is its diameter, 0 is the pipe mean 
axial velocity, 2 is the pipe friction factor (defined in Schlichting 
1960), and y and 6 are small. 

This nondimensionalization of x expresses the very different 
length scales in the axial and radial directions (since 2/4 is very 
small) and is appropriate because, in a nonswirling flow, 
Op/dz = - 1 from the definition of 2. u(s) is the fully developed 
velocity profile. Then considering Equation 1, V can reasonably 
be nondimensionalized as 

V = 260v/4 (6) 

The decay of  swirl in a pipe: M. J. Reader-Harris 

The Reynolds stresses are expressed in terms of a turbulent 
kinematic viscosity, VT, expressed in nondimensional terms as 

2 _  
v T = - URNr(s) + smaller terms (7) 

4 

and the Reynolds number is defined as 

DO 
R e -  

V 

On nondimensionalizing and dropping smaller terms, Equa- 
tions 2, 3, and 4 become, respectively, 
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Since Equation 9 implies that p is a function of z alone, 
Equation 8 implies that Op/Oz is in fact a constant, which must 
be - 1, its value when the swirl has decayed away completely. 
So Equation 8 becomes 

- 1 = - - -  S NT+ 
S ds 

which by integration becomes 

8 "~du 
- ½ s =  N T + ~ e )  dss (11) 

Equation I0 can be solved by separation of variables. Writing 
w = Z ( z ) S ( s )  gives 

Z' 1 d { ( ~Re) (  ! ) }  -- S 2 N T + S' -- 
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= constant = - ~b 2 (12) 
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Roughness function 
Pipe diameter 
Bessel function of first order 
Roughness as on the Moody diagram 
Sand roughness 
Reynolds number based on pipe radius and 
maximum axial velocity 
Nondimensionalized turbulent kinematic viscosity 
Mean pressure at a point 
Nondimensionalized pressure 
Pipe radius 
Mean absolute roughness height 
Pipe Reynolds number 
Mean velocity components in axial, radial, and 
circumferential directions 
Fluctuating velocity components in axial, radial, 
and circumferential directions 
Pipe mean velocity 
Nondimensionalized axial velocity: fully devel- 
oped and perturbation 
Axial velocity and distance from the wall, 
nondimensionalized using the friction velocity 
{ = O( ,V8)1~2} .  

/), W 

X, r 

Y 
Z,S 
Z, S 

Nondimensionalized velocity components in 
radial and circumferential directions 
Axial and radial coordinates 
S/s 
Dependence of w on z and s 
Nondimensionalized axial and radial coordinates 

Greek symbols 

fl Decay rate 
7, 3 Small parameters 
0 Swirl angle 
x, Zero of J t  
2 Friction factor 
v Kinematic viscosity 
vr Turbulent kinematic viscosity 
p Density 
~b 2 Eigenvalue 

Subscripts 

1, 2, 3 Refer to the eigenvalues and eigenvectors 
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So 

Z = exp (--q~2z) (13) 

and 

ds dss ( ! ) }  + ~b2s3u(!) (14, 

with boundary conditions S(0) = S(1) = 0. The main task is to 
determine the eigenvalues and eigenfunctions of Equation 14. 

S o l v i n g  t h e  s w i r l  e q u a t i o n  

Constant turbulent viscosity 

Kreith and Sonju (1965) assumed that vT (in this section relating 
only to the Reynolds stress term v'w') was not a function of s, 
but could be expressed simply as 

V.r/V = 0.004 15N °'86 (15) 

where N R is the pipe Reynolds number based on pipe radius 
and maximum axial velocity. 

With the assumption of a constant turbulent viscosity, it is 
possible to rearrange Equations 13 and 14, respectively, as 

Z = exp {-x2(N'r + Z ) z  } 

d d 

(16) 

(17) 

Moreover, if u = 1, the solution to Equation 17 is a first-order 
Bessel function, and, substituting from Equation 15, the 
complete solution to Equations 16 and 17 is obtained: 

( w = A.dl(x.s)exp -K2(0.004 15N °'a6 + 1)~e  e (18) 
n = , 

where r ,  are the zeros of J , .  
For sufficiently large x, only the first term of this series is 

important: for this term, x I = 3.8317, and for a given value of 
x, the maximum value of w occurs at s = 0.480 51. 

If a more physically realistic equation for axial velocity, 
u = 60(1 - s)'/~/49, is included, then the solution to Equation 
17 is a double sum of Bessel functions; the details will be found 
in Kreith and Sonju (1965). The complete solution to Equations 
16 and 17 is a small perturbation to that for u = 1; a more 
accurate equation for u makes surprisingly little difference to 
the circumferential velocity profile. 

Computed turbulent viscosity 

A more consistent approach than to use an assumed constant 
turbulent viscosity is to determine the turbulent viscosity from 
Equation 11 and substitute it into Equation 14. Writing y = Sis 
gives 

ds duds + ~2s3uy = 0 (19) 

ds 

This is in Sturm-Liouville form and has to be solved over the 
interval from 0 to 1 with the boundary conditions y ~ constant 

as s ~ 0 and y(1) = 0. It remains to prescribe u: in smooth pipe, 

u + = ~2.51n y+ + 5.5 

/ 
/5.551 -- 33.3s z 

\ + 2.5 In (0.1699 Re21/2) 

y + < 5  
5 < y +  <27.19 
27.19 < y+ and 

0.0390 < s 

s < 0.0390 

(20) 

and in rough pipe, 

\2(ks~D)/ 
u ÷ = 0.051 - 33.3s 2 (21) 

| + 2 5  In (0.4805'] 
" \ k ~ / D / +  B s < 0.0390 

where u = u+(2/8) 1/2, y+ = 0.5(1 -s)Re(2/8) 1/2, and ks is the 
sand roughness. 

Values of B are given in Schlichting (1960); in the completely 
rough regime, B = 8.5. 

These formulations of u were chosen to give good agreement 
with the standard formulas given in Schlichting, but with small 
modifications: u is prescribed near the pipe axis in such a way 
that du/ds = 0 on the axis, since otherwise it is not always 
possible to obtain a solution to Equation 19 that satisfies its 
boundary conditions; in the case of the smooth pipe, a 
transition zone is included between the sublayer and the 
log-layer so that both u and du/ds (and thus the turbulent 
viscosity) are continuous for all s. 

Since the pipe pressure gradient is proportional to the square 
of the mean pipe velocity, it is very important that the flow 
rate given by integration should be consistent with the 
nondimensionalization: hence, j" 2 us ds = 1 (22) 

0 

This determines the value of ~. (although it is only possible to 
obtain the integral approximately if the pipe is very rough). In 
most cases where computed values are presented in the figures 
and tables, the absolute value of the difference between the 
value of 2 obtained using Equation 22 and that obtained using 
the Colebrook-White equation (quoted by Schlichting) is less 
than 0.0002: where Re = 104, the difference is 0.0011, but the 
difference between the value of 2 obtained using Equation 22 
and that using the Blasius equation also in Schlichting is only 
0.0003; in the case of the two rough pipes, the Colebrook- 
White equation is not valid, since it is not valid for 
sand-roughened pipes in the transition regime. With the values 
of u given in Equations 20 and 21, Equation 19 is solved for 
y using the Nag routine D02KEF (1988). Eigenvalues, 
4~(n = 1, 2 , . . . ) ,  are obtained together with corresponding 
eigenvectors, y,. Calculations were performed first for smooth 
pipes at Reynolds numbers of 104, 10 s, 106, and l0 T. From the 
eigenvalues the decay rates, fl~, (nondimensionalized with pipe 
diameter; so w ocexp(-flix/D)) are obtained: fl~=24~/2. 
These rates are tabulated in Table 1. In each case, the second 
eigenvalue is of the order of ten times the first one; so provided 
that the swirl angle is not too large, the circumferential velocity 
profile will rapidly acquire the shape of the first eigenfunction. 
The values ofsya( = $1, the circumferential velocity profile) and 
of syt/u (which is proportional to the tangent of the swirl angle 
and thus approximately to the swirl angle, 0, for small swirl) 
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Table 1 Swirl decay rates 
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Turbulent viscosity 

Decay rates 

Pipework/prof i le Re 2 /~ #2 /73 

N r from Equation 11 
NT from Equation 11 
NTfrom Equation 11 
N T from Equation 11 
NT from Equation 11 
NT from Equation 11 
VT from Equation 1 5 
(assuming NR = Re/2) 
(Kreith and Sonju) 
VT from Equation 15 
(assuming NR = 30 Re/49 
(Kreith and Sonju) 

Hydraulically smooth 104 0.0320 0.0328 0.313 0.698 
Hydraulically smooth 10 s 0.0179 0.0192 0.221 0.498 
Hydraulically smooth 10 s 0.0115 0.0123 0.172 0.391 
Hydraulically smooth 107 0.0080 0.0085 0.140 0.322 
Rough: ks/D = 0.003 105 0.0236 0.0255 0.259 0.578 
Rough: ks/D = 0.01 10 ~ 0.0385 0.0414 0.345 0.761 
u ~- 1 105 0.0274 0.092 0.193 

u = 60(1 - s)'i/7/49 10 ~ 0.0300 0.101 0.213 
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Figure 1 Computed circumferential velocity profile 
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Figure 2 Computed swirl angle profile 

are given in Figures 1 and 2, respectively. Although u falls 
rapidly to 0 as the wall is approached, yl/u remains 
approximately constant (Y2/U and Y3/U also remain approx- 
imately constant). With the assumption that in the immediate 
neighborhood of the wall, y oc u for rough pipe also, 
calculations are performed for two rough pipes, and the results 
are included in Table i and in Figures 1 and 2. For comparison, 
calculations using the constant turbulent viscosity assumed by 
Kreith and Sonju (1965) are included. 

Since f12 is so much larger than/91, the decay rate tends very 
rapidly to fit. Moreover, fli is well approximated by 1.07 2, 

and in the cases considered in Table 1 never differs from 1.07 ). 
by more than 0.012 2, except in the case where Re = 104, in 
which the difference is 0.04 2. The general equation for swirl 
decay is thus 

w oc exp ( -  fix~D), 

where the decay rate,/7, is given by 

/7 = 1.07 2. (23) 

Compar ison  w i t h  e x p e r i m e n t a l  data  

Equation 23 can be validated by considering experimental data 
on swirl decay. Decay rates are presented in Baker and Sayre 
(1974), Kitoh (1991), Mattingly and Yeh (1990), McManus et 
al. (1985), and Murakami et al. (1976) and can easily be 
calculated from the data of Kreith and Sonju (1965), Mottram 
and Rawat (1986), and Senoo and Nagata (1972). Where an 
experimenter provided several sets of data in the same pipe at 
the same Reynolds number, but with differential initial swirl 
levels, the decay rates were almost unaffected by the initial swirl 
level and have been averaged. Where the decay rate changes 
as the swirl decays, an overall decay rate covering decay from 
strong swirl to weak swirl has been calculated. The friction 
factor of the pipe in which the data were taken was measured 
by Baker and Sayre and by Mottram and Rawat. The relative 
roughness of the pipe was measured by Mattingly and Yeh, 
Murakami et al., and Senoo and Nagata, and 2 can be 
calculated using the Colebrook-White equation. For the data 
of McManus et al., a pipe roughness, k, of 12/~m 
(corresponding to Ra = 150 ~tinch, a typical value for pipe used 
in flow measurement) was assumed; since Kreith and Sonju 
used plastic pipe and their Reynolds number did not exceed 
l0 s, their pipe was assumed to be hydraulically smooth. Kitoh's 
pipe also was hydraulically smooth. Experimental data can, 
therefore, be compared in Figure 3 with Equation 23 based on 
computation. The agreement is remarkably good, especially 
since the computational theory only applies for weakly swirling 
flow, whereas for some of the data sets the circumferential 
velocity even exceeded the pipe mean axial velocity. The two 
data points that are worst fitted are for very rough pipes, for 
which the values of kiD were 0.008 and 0.017. 

The greatest test for the computation is to compare the 
computed circumferential velocity and swirl angle profiles with 
those measured experimentally. Since the theory only applies 
in cases where the swirl angle is small, data with a maximum 
swirl angle greater than 15 ° are excluded from the comparison. 
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Figure 3 Swirl decay rate 
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Swirl angle profile: computation and experiment 

Measurements of swirl angle have been presented by Mattingly 
and Yeh (1990), McManus et al. (1985), and Mottram and 
Rawat (1986); swirl angles can be calculated from the velocity 
profile measurements of Murakami et al. (1976). In each case, 
the swirl angle profiles are scaled by the swirl angle at the wall, 
which is obtained by extrapolation from swirl angles near the 
wall and by taking the mean of the wall swirl angles on two 
radii if a complete diameter was measured. The swirl angle 
profiles are presented in Figure 4. If the swirl angle at the wall 
is less than 3 °, the data are not plotted, since it is inappropriate 
to scale the data by a very small angle. In the case of Mottram 
and Rawat (1986), only the smooth pipe data are plotted; their 
rough pipe data are not dissimilar. The computed swirl angle 
profile for a hydraulically smooth pipe with Re = 105 is also 
plotted in Figure 4. The agreement between the different 
experimental data and between the experimental data and the 
computation is striking, especially since the swirl was generated 
in many different ways: two bends in perpendicular planes, a 
single bend downstream of the shell side of a shell-and-tube 

steam heat exchanger, and an axial-flow-type impeller were 
used. Moreover, in some cases the flow was initially 
asymmetric, but the asymmetry has decayed much more 
rapidly than the swirl. In each case, after a sufficient distance, 
the swirl profile is in good agreement with that expected from 
the axisymmetric computation. 

On the assumption of solid-body rotation, Mottram and 
Rawat (1986) derived a swirl decay rate similar to, but more 
complicated than, Equation 23. This work provides support 
for the main assumption made in deriving their decay rate. 

It is interesting to note how small the decay rate is for smooth 
pipes at high Reynolds number and thus how much pipe is 
required for swirl induced by a fitting to decay to a level 
sufficiently small for accurate flow measurement. For instance, 
the number of diameters required for an 18 ° swirl immediately 
downstream of two bends in perpendicular planes to decay to 
2 ° (a reduction in circumferential velocity by a factor 
(tan 2°)/(tan 18 °) = 0.1075) is given in Table 2 for each of the 
combinations of roughness and Reynolds number used in Table 
1. The required number of diameters varies from 65 to 261 in 
smooth pipes. The lengths required for swirl to decay are so 
large that if swirl is present, a flow straightener should be used 
to remove it. Even flow straighteners that have a small head 
loss remove swirl effectively. The remaining asymmetry decays 
much faster than swirl would. 

Conclusions 

The way in which swirling flow decays in a pipe has been 
computed by solving the Navier-Stokes equations, simplified 
by using an order-of-magnitude analysis. The circumferential 
momentum equation is solved using the turbulent viscosity 
deduced from the axial momentum equation. At a sufficient 
distance downstream of a swirl-inducing fitting, the flow is 
predicted to rotate approximately as a solid body; experimental 
data confirm this prediction. Swirl decay rates have been 
predicted and a simple equation derived: this equation is also 
in good agreement with experiments. Since the swirl decay rate 
is approximately proportional to pipe friction factor, swirl will 
be extremely persistent in smooth pipes at high Reynolds 
numbers, and so if swirl is present, flow straighteners will 
probably be required for accurate flow measurement. 
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Table 2 Straight pipe required for swirl reduction to 10.75% of its initial value 

Turbulent viscosity Pipework/profile 
Re 

Diameters of 
2 straight pipe 

NT from Equation 11 
NT from Equation 11 
NT from Equation 11 
NT from Equation 11 
NT from Equation 11 
NT from Equation 11 

Hydraulically smooth 104 0.0320 65 
Hydraulically smooth 10 s 0.0179 116 
Hydraulically smooth 108 0.0115 181 
Hydraulically smooth 107 0.0080 261 
Rough: ks / D = 0.003 10 s 0.0236 88 
Rough: ks/D = 0.01 10 s 0.0385 54 
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